Downloads
Documentation
Get Involved
Help
Search docs
PHPerKaigi 2025
Getting Started
Introduction
A simple tutorial
Language Reference
Basic syntax
Types
Variables
Constants
Expressions
Operators
Control Structures
Functions
Classes and Objects
Namespaces
Enumerations
Errors
Exceptions
Fibers
Generators
Attributes
References Explained
Predefined Variables
Predefined Exceptions
Predefined Interfaces and Classes
Predefined Attributes
Context options and parameters
Supported Protocols and Wrappers
Security
Introduction
General considerations
Installed as CGI binary
Installed as an Apache module
Session Security
Filesystem Security
Database Security
Error Reporting
User Submitted Data
Hiding PHP
Keeping Current
Features
HTTP authentication with PHP
Cookies
Sessions
Handling file uploads
Using remote files
Connection handling
Persistent Database Connections
Command line usage
Garbage Collection
DTrace Dynamic Tracing
Function Reference
Affecting PHP's Behaviour
Audio Formats Manipulation
Authentication Services
Command Line Specific Extensions
Compression and Archive Extensions
Cryptography Extensions
Database Extensions
Date and Time Related Extensions
File System Related Extensions
Human Language and Character Encoding Support
Image Processing and Generation
Mail Related Extensions
Mathematical Extensions
Non-Text MIME Output
Process Control Extensions
Other Basic Extensions
Other Services
Search Engine Extensions
Server Specific Extensions
Session Extensions
Text Processing
Variable and Type Related Extensions
Web Services
Windows Only Extensions
XML Manipulation
GUI Extensions
Keyboard Shortcuts
?
This help
j
Next menu item
k
Previous menu item
g p
Previous man page
g n
Next man page
G
Scroll to bottom
g g
Scroll to top
g h
Goto homepage
g s
Goto search
(current page)
/
Focus search box
Introduction »
« geoip_time_zone_by_country_and_region
PHP Manual
Function Reference
Other Basic Extensions
Change language:
English
German
Spanish
French
Italian
Japanese
Brazilian Portuguese
Russian
Turkish
Ukrainian
Chinese (Simplified)
Other
FANN (Fast Artificial Neural Network)
Introduction
Installing/Configuring
Requirements
Installation
Resource Types
Predefined Constants
Examples
XOR training
Fann Functions
fann_cascadetrain_on_data
— Trains on an entire dataset, for a period of time using the Cascade2 training algorithm
fann_cascadetrain_on_file
— Trains on an entire dataset read from file, for a period of time using the Cascade2 training algorithm
fann_clear_scaling_params
— Clears scaling parameters
fann_copy
— Creates a copy of a fann structure
fann_create_from_file
— Constructs a backpropagation neural network from a configuration file
fann_create_shortcut
— Creates a standard backpropagation neural network which is not fully connectected and has shortcut connections
fann_create_shortcut_array
— Creates a standard backpropagation neural network which is not fully connectected and has shortcut connections
fann_create_sparse
— Creates a standard backpropagation neural network, which is not fully connected
fann_create_sparse_array
— Creates a standard backpropagation neural network, which is not fully connected using an array of layer sizes
fann_create_standard
— Creates a standard fully connected backpropagation neural network
fann_create_standard_array
— Creates a standard fully connected backpropagation neural network using an array of layer sizes
fann_create_train
— Creates an empty training data struct
fann_create_train_from_callback
— Creates the training data struct from a user supplied function
fann_descale_input
— Scale data in input vector after get it from ann based on previously calculated parameters
fann_descale_output
— Scale data in output vector after get it from ann based on previously calculated parameters
fann_descale_train
— Descale input and output data based on previously calculated parameters
fann_destroy
— Destroys the entire network and properly freeing all the associated memory
fann_destroy_train
— Destructs the training data
fann_duplicate_train_data
— Returns an exact copy of a fann train data
fann_get_activation_function
— Returns the activation function
fann_get_activation_steepness
— Returns the activation steepness for supplied neuron and layer number
fann_get_bias_array
— Get the number of bias in each layer in the network
fann_get_bit_fail
— The number of fail bits
fann_get_bit_fail_limit
— Returns the bit fail limit used during training
fann_get_cascade_activation_functions
— Returns the cascade activation functions
fann_get_cascade_activation_functions_count
— Returns the number of cascade activation functions
fann_get_cascade_activation_steepnesses
— Returns the cascade activation steepnesses
fann_get_cascade_activation_steepnesses_count
— The number of activation steepnesses
fann_get_cascade_candidate_change_fraction
— Returns the cascade candidate change fraction
fann_get_cascade_candidate_limit
— Return the candidate limit
fann_get_cascade_candidate_stagnation_epochs
— Returns the number of cascade candidate stagnation epochs
fann_get_cascade_max_cand_epochs
— Returns the maximum candidate epochs
fann_get_cascade_max_out_epochs
— Returns the maximum out epochs
fann_get_cascade_min_cand_epochs
— Returns the minimum candidate epochs
fann_get_cascade_min_out_epochs
— Returns the minimum out epochs
fann_get_cascade_num_candidate_groups
— Returns the number of candidate groups
fann_get_cascade_num_candidates
— Returns the number of candidates used during training
fann_get_cascade_output_change_fraction
— Returns the cascade output change fraction
fann_get_cascade_output_stagnation_epochs
— Returns the number of cascade output stagnation epochs
fann_get_cascade_weight_multiplier
— Returns the weight multiplier
fann_get_connection_array
— Get connections in the network
fann_get_connection_rate
— Get the connection rate used when the network was created
fann_get_errno
— Returns the last error number
fann_get_errstr
— Returns the last errstr
fann_get_layer_array
— Get the number of neurons in each layer in the network
fann_get_learning_momentum
— Returns the learning momentum
fann_get_learning_rate
— Returns the learning rate
fann_get_MSE
— Reads the mean square error from the network
fann_get_network_type
— Get the type of neural network it was created as
fann_get_num_input
— Get the number of input neurons
fann_get_num_layers
— Get the number of layers in the neural network
fann_get_num_output
— Get the number of output neurons
fann_get_quickprop_decay
— Returns the decay which is a factor that weights should decrease in each iteration during quickprop training
fann_get_quickprop_mu
— Returns the mu factor
fann_get_rprop_decrease_factor
— Returns the increase factor used during RPROP training
fann_get_rprop_delta_max
— Returns the maximum step-size
fann_get_rprop_delta_min
— Returns the minimum step-size
fann_get_rprop_delta_zero
— Returns the initial step-size
fann_get_rprop_increase_factor
— Returns the increase factor used during RPROP training
fann_get_sarprop_step_error_shift
— Returns the sarprop step error shift
fann_get_sarprop_step_error_threshold_factor
— Returns the sarprop step error threshold factor
fann_get_sarprop_temperature
— Returns the sarprop temperature
fann_get_sarprop_weight_decay_shift
— Returns the sarprop weight decay shift
fann_get_total_connections
— Get the total number of connections in the entire network
fann_get_total_neurons
— Get the total number of neurons in the entire network
fann_get_train_error_function
— Returns the error function used during training
fann_get_train_stop_function
— Returns the stop function used during training
fann_get_training_algorithm
— Returns the training algorithm
fann_init_weights
— Initialize the weights using Widrow + Nguyen’s algorithm
fann_length_train_data
— Returns the number of training patterns in the train data
fann_merge_train_data
— Merges the train data
fann_num_input_train_data
— Returns the number of inputs in each of the training patterns in the train data
fann_num_output_train_data
— Returns the number of outputs in each of the training patterns in the train data
fann_print_error
— Prints the error string
fann_randomize_weights
— Give each connection a random weight between min_weight and max_weight
fann_read_train_from_file
— Reads a file that stores training data
fann_reset_errno
— Resets the last error number
fann_reset_errstr
— Resets the last error string
fann_reset_MSE
— Resets the mean square error from the network
fann_run
— Will run input through the neural network
fann_save
— Saves the entire network to a configuration file
fann_save_train
— Save the training structure to a file
fann_scale_input
— Scale data in input vector before feed it to ann based on previously calculated parameters
fann_scale_input_train_data
— Scales the inputs in the training data to the specified range
fann_scale_output
— Scale data in output vector before feed it to ann based on previously calculated parameters
fann_scale_output_train_data
— Scales the outputs in the training data to the specified range
fann_scale_train
— Scale input and output data based on previously calculated parameters
fann_scale_train_data
— Scales the inputs and outputs in the training data to the specified range
fann_set_activation_function
— Sets the activation function for supplied neuron and layer
fann_set_activation_function_hidden
— Sets the activation function for all of the hidden layers
fann_set_activation_function_layer
— Sets the activation function for all the neurons in the supplied layer
fann_set_activation_function_output
— Sets the activation function for the output layer
fann_set_activation_steepness
— Sets the activation steepness for supplied neuron and layer number
fann_set_activation_steepness_hidden
— Sets the steepness of the activation steepness for all neurons in the all hidden layers
fann_set_activation_steepness_layer
— Sets the activation steepness for all of the neurons in the supplied layer number
fann_set_activation_steepness_output
— Sets the steepness of the activation steepness in the output layer
fann_set_bit_fail_limit
— Set the bit fail limit used during training
fann_set_callback
— Sets the callback function for use during training
fann_set_cascade_activation_functions
— Sets the array of cascade candidate activation functions
fann_set_cascade_activation_steepnesses
— Sets the array of cascade candidate activation steepnesses
fann_set_cascade_candidate_change_fraction
— Sets the cascade candidate change fraction
fann_set_cascade_candidate_limit
— Sets the candidate limit
fann_set_cascade_candidate_stagnation_epochs
— Sets the number of cascade candidate stagnation epochs
fann_set_cascade_max_cand_epochs
— Sets the max candidate epochs
fann_set_cascade_max_out_epochs
— Sets the maximum out epochs
fann_set_cascade_min_cand_epochs
— Sets the min candidate epochs
fann_set_cascade_min_out_epochs
— Sets the minimum out epochs
fann_set_cascade_num_candidate_groups
— Sets the number of candidate groups
fann_set_cascade_output_change_fraction
— Sets the cascade output change fraction
fann_set_cascade_output_stagnation_epochs
— Sets the number of cascade output stagnation epochs
fann_set_cascade_weight_multiplier
— Sets the weight multiplier
fann_set_error_log
— Sets where the errors are logged to
fann_set_input_scaling_params
— Calculate input scaling parameters for future use based on training data
fann_set_learning_momentum
— Sets the learning momentum
fann_set_learning_rate
— Sets the learning rate
fann_set_output_scaling_params
— Calculate output scaling parameters for future use based on training data
fann_set_quickprop_decay
— Sets the quickprop decay factor
fann_set_quickprop_mu
— Sets the quickprop mu factor
fann_set_rprop_decrease_factor
— Sets the decrease factor used during RPROP training
fann_set_rprop_delta_max
— Sets the maximum step-size
fann_set_rprop_delta_min
— Sets the minimum step-size
fann_set_rprop_delta_zero
— Sets the initial step-size
fann_set_rprop_increase_factor
— Sets the increase factor used during RPROP training
fann_set_sarprop_step_error_shift
— Sets the sarprop step error shift
fann_set_sarprop_step_error_threshold_factor
— Sets the sarprop step error threshold factor
fann_set_sarprop_temperature
— Sets the sarprop temperature
fann_set_sarprop_weight_decay_shift
— Sets the sarprop weight decay shift
fann_set_scaling_params
— Calculate input and output scaling parameters for future use based on training data
fann_set_train_error_function
— Sets the error function used during training
fann_set_train_stop_function
— Sets the stop function used during training
fann_set_training_algorithm
— Sets the training algorithm
fann_set_weight
— Set a connection in the network
fann_set_weight_array
— Set connections in the network
fann_shuffle_train_data
— Shuffles training data, randomizing the order
fann_subset_train_data
— Returns an copy of a subset of the train data
fann_test
— Test with a set of inputs, and a set of desired outputs
fann_test_data
— Test a set of training data and calculates the MSE for the training data
fann_train
— Train one iteration with a set of inputs, and a set of desired outputs
fann_train_epoch
— Train one epoch with a set of training data
fann_train_on_data
— Trains on an entire dataset for a period of time
fann_train_on_file
— Trains on an entire dataset, which is read from file, for a period of time
FANNConnection
— The FANNConnection class
FANNConnection::__construct
— The connection constructor
FANNConnection::getFromNeuron
— Returns the postions of starting neuron
FANNConnection::getToNeuron
— Returns the postions of terminating neuron
FANNConnection::getWeight
— Returns the connection weight
FANNConnection::setWeight
— Sets the connections weight
Found A Problem?
Learn How To Improve This Page
•
Submit a Pull Request
•
Report a Bug
+
add a note
User Contributed Notes
There are no user contributed notes for this page.
↑
and
↓
to navigate •
Enter
to select •
Esc
to close
Press
Enter
without selection to search using Google